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We introduce a mean field model that allows us to determine the interfacial behavior of AB random
copolymers. Through this model, we calculate the reduction in interfacial tension ¥ that occurs when
the random copolymers localize at the interface between immiscible homopolymers 4 and B. We also
isolate the conditions under which the random copolymers are most efficient at reducing y and therefore
act as efficient compatibilizers. The calculations are useful in designing low-cost copolymer additives
that significantly improve the properties of polymer blends.

PACS number(s): 61.41.+¢, 83.80.Es, 31.15.Ne

A fundamental problem in fabricating high-strength
polymer blends is that different homopolymers are nor-
mally immiscible and, as a result, phase separate into dis-
tinct, macroscopic domains. In order to improve the
adhesion between the homopolymer phases, copolymer
“compatibilizers” are added to the mixture. The copoly-
mers localize at the interface between the two phases,
lower the interfacial tension, and facilitate the dispersion
of the incompatible homopolymers into smaller domains.
Previously, diblock copolymers [1] were shown to be use-
ful in reducing the interfacial tension. However, these
copolymers are expensive to synthesize; consequently,
their use in large-scale industrial processes is limited.

Random copolymers, on the other hand, are inexpen-
sive to synthesize [2]. If these copolymers were shown to
behave as effective compatibilizers, the findings would
have a significant technological impact. A clue to the
properties of these chains can be found in theoretical
studies on the behavior of a single random copolymer
chain at a fluid-fluid interface [3]. The studies revealed
that the random copolymer weaves back and forth across
the interface, forming large loops [3]. These loops could
entangle with both the homopolymer phases and thereby
enhance the strength of the interface. Experimental evi-
dence seems to support this contention as recent experi-
ments on reinforcing polymer-polymer interfaces with
random copolymers showed a significant improvement in
the strength of the interface [2].

To obtain further insight into the behavior of random
copolymers, one must go beyond the single chain model
and examine the properties of a finite volume fraction of
copolymers at a homopolymer-homopolymer interface.
Such studies would be difficult to carry out by either
analytical calculations or computer simulations. With
both these techniques, one models the interface between
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the two homopolymers as a sharp, flat region. This as-
sumption limits the applicability of the predictions. Fur-
thermore, interfacial tensions cannot readily be calculat-
ed from computer simulations. Here we introduce a self-
consistent field lattice model that explicitly includes the
effect of a random arrangement of monomers along the
length of the chains. Using this model, we can now
determine the efficiency of random copolymers as compa-
tibilizing agents. In particular, we calculate the reduc-
tion in interfacial tension resulting from the presence of
these random copolymers. We also examine the effects of
chain length and composition on the efficiency of these
chains. Finally, we compare the behavior of random
copolymers with that of other architectures, such as di-
blocks and alternating copolymers.

Our self-consistent field (SCF) method is derived from
the theory of Scheutjens and Fleer [4,5], where the phase
behavior of polymer systems is modeled by combining
Markov chain statistics with a mean field approximation.
The free energy per site in the mean field approximation
can be written as

fr)=—=3n; (Pnn,; (r)

+%EXjkfﬂ("—r')(bj(r)(ﬁk(r')dr’ . (1)
IY

The first term represents the entropy of mixing, where
n; .(r) is the number density at » of molecules type i in
conformation ¢. The second term is a result of the ener-
getic contributions. The indices j and k run over all the
types of segments present and ¢;(r) represents the aver-
age density of monomers j at r. The term Y is the
Flory-Huggins interaction parameter and n(r —r') is an
interaction function that will be replaced by a summation
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over nearest neighbors.

In order to calculate the density distribution of the
different segment types that minimizes Eq. (1), we exploit
the analogy between the trajectory of a diffusing particle
and the conformation of a chain [6]. We define Green’s
functions of the type G(r,,N’|r,,N'') as the combined
statistical weight of all conformations of a subchain start-
ing with segment N’ at r; and ending with segment N"’ at
r,. For a copolymer there are two sets of Green’s func-
tions: one for N' <N’ and another for N'>N"'. Green’s
functions in the first set obey the recursion relationship

G(r,N'|ry,1)=exp[ — U;(r)]
X [ G(r',N'=1|r, Dn(r—r"dr, 2)

and the boundary condition
G(r1|r',1)=exp[ —U;(r)18(r—r') . (3)

Here U, (r) is the potential of mean force felt by segment i
and is given by

Uin=ar+3 xu [ ¢r'mir—r)dr . @)
k

a(r) is a hard core potential that ensures incompressibili-
ty. Similar relationships can be derived for the second set
of Green’s functions. The segment density at a site » can
then be calculated from the Green’s functions as

¢;(r)=3 Ciexp[ —U;(r)]

X 3 [GrNIr,DG(rN'|r),N,)dr dr, ,
N'€E€j

(5)

where N, is the length of molecule i/ and C; is a normali-
zation constant, which can be obtained from the total

number of molecules r;:

C,-=n,~/

From Egs. (2)-(6), the self-consistent density distribu-
tions for the different segment types can be calculated by
discretizing the equations and solving them through stan-
dard numerical techniques [5].

An effect of randomness on the properties of polymer
chains had been incorporated into the SCF model by van
Lent and Scheutjens [7]. They defined a transition proba-
bility T, as the probability that in molecule / a mono-
mer x is immediately followed by a monomer y. The re-
cursion relationship [Eq. (2)] was then rewritten by incor-
porating these transition probabilities [7]. As a result of
the change in the recursion relationship, the model as-
sumes an annealed randomness where the sequence distri-
bution of the chain constantly adjusts to its environment.
This effect can lead to fundamentally anomalous phase
behavior, as particular sequences can dominate the prop-
erties of the system.

In our calculation, we adopt a different approach to
specify the randomness of the chains. We consider each
random copolymer as a separate molecule and fix its se-

S [G(r,N'|ry, V)driar, | . 6)
<
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quence distribution at the start of the calculation. This
models a quenched or frozen randomness, as each chain
retains its sequence distribution throughout the calcula-
tion. For all the SCF results presented in this paper cach
system involves specifying 500 different sequences [9].
(Note that this procedure involves calculating the
Green’s functions [Eq. (2)] for each of the 500 sequences.)

We define an order parameter f for the random copo-
lymer as the fraction of 4 monomers on the chain
(f=<1). Then we construct our random sequences by
designating monomers either A or B with probability f
and 1—f, respectively. Note that the construction of
random sequences in this manner results in f;5f for a
particular sequence i. This is always true for finite length
chains as fluctuations in the sequence distribution decay
asVN,N being the length of the chain [8].

We fixed the lengths of the immiscible homopolymers
A and B at N, =100 and the Flory-Huggins parameter
X 45 =0.1. The calculations were performed in one di-
mension (the direction perpendicular to the interface, re-
ferred to as the z direction) with translational invariance
assumed in the xy plane.

Since the amount of random copolymer added to the
system to achieve a desired reduction in the interfacial
tension is dependent on the size of the system, we use two
other measures to determine the efficiency of random
copolymers. The first quantity is the equilibrium bulk
concentration ¢® of the random copolymers and the
second is the excess number density of copolymer at the
interface n®*, which is given by

nf*=-1—vlj S OICE @)

where N; is the length of molecule i and the sum is over
all lattice layers. The first quantity ¢° is independent of
system size and thus is a true measure of the volume frac-
tion of the compatibilizer. On the other hand, n®* is in-
versely proportional to the area occupied by a copolymer
molecule at the interface.

For the first set of calculations, we fixed f=0.5 and
studied the effects of varying the length of the random
copolymer. In Fig. 1 we plot the interfacial tension y as
a function of the bulk concentration when compatibiliz-
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FIG. 1. Plot of the interfacial tension y as a function of the
bulk concentration ¢® for random copolymers of length 100 and
300.
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FIG. 2. Plot of the interfacial tension as a function of n°*.
The inset shows the density profile clearly indicating the forma-
tion of the random copolymer phase.

ers of different lengths are used. The plot clearly shows
that a smaller amount of the longer random copolymer is
needed to achieve a desired reduction in the interfacial
tension. However, there is a limit to the reduction in in-
terfacial tension that can be reached by using the longer
random copolymer. This is shown in Fig. 2, where the
interfacial tension is plotted as a function of n**. For the
longer chain, the interfacial tension saturates at a certain
density of copolymers at the interface. We believe that
this is a result of the random copolymer forming its own
phase between the two homopolymers (see the inset).
Once the interfacial tension decreases to the point at
which the system can generate two interfaces, the ran-
dom copolymer phase separates. As a result, the satura-
tion interfacial tension is given by the interfacial tension
between the random copolymer and one of the homopo-
lymer components.

As the relevant parameter controlling phase separation
in polymer systems is YN, the shorter random copolymer
does not phase separate at the value of ¥ 45 used in these
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FIG. 4. Plot of the excess number density of chains at the in-
terface as a function of ¢®. The f=0.4 random copolymer lo-
calizes more strongly to the interface when mixed with an equal
amount of f=0.6 copolymer. The inset shows the density
profiles from the mixture of random copolymers.

calculations. Consequently, a shorter random copolymer
is better suited for the purpose of reducing the interfacial
tension, as the value at which the interfacial tension will
saturate will decrease with decreasing copolymer length.

In the next set of calculations, we fixed the length of
the random copolymer at 300 lattice units and studied
the effect of composition on the effectiveness of the ran-
dom copolymer. The symmetry of the problem dictates
that the f=0.5 random copolymer be the most efficient
(Fig. 3). However, it should be noted that the symmetric
random copolymer will form its own phase, thus limiting
the reduction in interfacial tension. As this restricts the
use of random copolymers as compatibilizing agents, it is
necessary to suppress the phase separation in order to
drive the interfacial tension to a lower value.

One way of accomplishing this goal is to introduce a
degree of chemical dispersity in the composition of the
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FIG. 3. Plot of the interfacial tension versus the bulk concen- chain architectures. In all cases the chain length was fixed at
tration for random copolymers with different values of f. N =300.
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random copolymers. Specifically, we used a mixture of
two kinds of random copolymers, i.e., our compatibilizers
consisted of 50% f=0.4 random copolymers and 50%
f=0.6 random copolymers. From Fig. 3, it is seen that
the blend of random copolymers reduces the interfacial
tension to a much lower value than the symmetric ran-
dom copolymer. By introducing chemical dispersity in
the random copolymers, we have created an additional
driving force for localizing the copolymers at the inter-
face (see Fig. 4). Since the two types of copolymers are
more miscible with each other than with both the homo-
polymers, there is a net attraction between the copoly-
mers. This attraction effectively drives copolymers from
the bulk, increases the number of chains at the interface
(relative to the pure f =0.4 case), and results in a lower
interfacial tension. It should be noted, however, that the
mixture of random copolymers cannot have a broad dis-
tribution of compositions. If we repeat our calculations
with a mixture of f=0.3 and 0.7 random copolymers,
the interfacial tension reduction becomes less efficient
(Fig. 3). Therefore, for optimum results, the mixture of
compatibilizers should be closely centered around
f=0.5.

For the final set of calculations we fixed f =0.5 for the
random copolymer and compared the random copolymer
to diblock copolymers and alternating copolymers. In all
cases, the diblock copolymer was the most efficient of the
three, with the alternating and the random copolymer
showing almost identical behavior (Fig. 5). An interest-
ing result from this calculation is that the same compati-
bilizing effect can be obtained by replacing a random
copolymer by its equivalent homopolymer. In particular,
by replacing the symmetric random copolymer (f=0.5)
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with a homopolymer C, which has a reduced interaction
given by

X ac=Xpc=1—FX 45 » (8)

we see very similar behavior (see Fig. 5).

In conclusion, we extended mean field calculations to
random copolymers by accounting for the sequence dis-
tribution of the copolymers explicitly. Our results indi-
cate that random copolymers localize at the interface be-
tween two incompatible homopolymers and reduce the
interfacial tension. However, the reduction in interfacial
tension is limited by the random copolymers forming
their own phase. The optimum compatibilizing effect is
produced with the mixture of random copolymers closely
centered around f =0.5.

We have also demonstrated that the random copoly-
mer can be replaced by an equivalent homopolymer C,
with the appropriate scaling of the y parameter between
the C homopolymer and the A4 and B components. It is
important to note, however, that the interactions between
the homopolymer C and the components of the blend
have to be symmetric (¥ 40 =Xpc) for optimum results.
This restriction severely limits the choice of an appropri-
ate homopolymer compatibilizer.

We would like to thank S. T. Milner, G. T. Pickett, Y.
Lyatskaya, and E. B. Zhulina for useful discussions.
A.C.B. would like to acknowledge financial support from
the ONR through Grant No. NO00014-91-J-1363, the
NSF through Grant No. DMR-9407100, the DOE
through Grant No. DEFG02-90ER45438, and the Du-
pont company.

[1]S. H. Anastasiadis, R. Gancarz, and J. T. Koberstein,
Marcomolecules 22, 1449 (1989); R. Fayt, R. Jerome, and
P. Teyssie, J. Polym. Lett. 24, 25 (1986); L. Leiber, Makro-
mol. Chem., Makomol. Symp. 16, 1 (1988); J. Noolandi
and K. M. Hong, Macromolecules 17, 1531 (1984); K.
Shull, A. J. Kellock, V. R. Deline, and S. A. J. Mac-
Donald, J. Chem. Phys. 97, 2095 (1992).

[2] H. R. Brown, K. Char, and V. R. Deline, Macromolecules
26, 4155 (1993); K. Char, H. R. Brown, and V. R. Deline,
ibid. 26, 4164 (1993); C. Dai, B. J. Dair, K. H. Dai, C. K.
Ober, E. J. Kramer, C.-Y. Hui, and L. W. Jelinski, Phys.
Rev. Lett. 73, 2472 (1994).

[3]1 C. Yeung, A. C. Balazs, and D. Jasnow, Macromolecules
25, 3685 (1992); D. Gersappe, W. Li, and A. C. Balazs, J.
Chem. Phys. 99, 7209 (1993).

[4] J. M. H. M. Scheutjens and G. J. Fleer, J. Chem. Phys. 83,
1619 (1979).

[5] G. Fleer, M. A. Cohen-Stuart, J. M. H. M. Scheutjens, T.
Cosgrove, and B. Vincent, Polymers at Interfaces (Chap-
man and Hall, London, 1993).

[6] M. Doi and S. F. Edwards, The Theory of Polymer Dynam-
ics (Oxford Science, Oxford, 1986); P.-G. de Gennes, Scal-
ing Concepts in Polymer Physics (Cornell University Press,
Ithaca, 1979).

[7] B. van Lent and J. M. H. M. Scheutjens, J. Phys. Chem.
94, 5033 (1990).

[8] A. Nesarikar, M. Olvera de la Cruz, and B. Crist, J.
Chem. Phys. 98, 7385 (1993).

[9] The total amount of copolymer is partitioned among these
500 sequences with each sequence contributing equally to
the total amount of copolymer. The concentration profile
of the random copolymer shown is the sum of the profiles
of the individual sequences.



